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Behavior of Elastic Networks of Various Degrees

*
of Orientation in the Kinetic Theory of Fracture

* ¥
H. H. Kausch-Blecken von Schmeling and C. C. Hsiao
University of Minnesota, Minneapolis, Minnesota

This paper describes a kinetic theory of fracture
using a network of linear elastic elements as a model
to calculate the strength and elastic properties of
oriented materials., Emphasis has been placed on the
questions as to whether the assumptions of small strains
as well as the invariant molecular orientation distribu-
tion are valid for the total fracture process. During
the fracture process the breakage of molecular elements
reduces the modulus of elasticity. However, it was
found to be less than one per cent for most of the
lifetime of a sample,

For any network systems of different degrees of
orientation the calculated curves of the logarithm of
time to break versus moderate applied stress are linear,
but of different slopes. The slopes are inversely
proportional to the modulus of elasticity of the network
at zero time. Therefore, if the calculated curves of
the logarithm of time are plotted versus the initial
strain (the applied stress divided by the initial
modulus of elasticity), the linear portions of all
curves reduce to one, For very small or very large
stresses the curves deviate from linearity.

*Supported in part by the National Aercnautics and

Space Administration
**Present address: Californla Institute of Technology




INTRODUCTION

The important problem of brittle fracture of solids
has been investigated by many authors experimentally as
well as analytically., For a large group of materials
the time and temperature dependency of the fracture
strength indicated:the presence of thermal activation
processes during fracture developmentl_4. Especially
for high polymer solids 1t was found that the energy
of activation had a value comparable to the binding
energy of primary chemical bonds4. It was thus suggested
that the breakage of primary bonds in the chain molecules
actually takes place., Furthermore, this phenomenon 1s
considered to be the dominant cause of the eventual
failure of these solids.

With this knowledge in mind it seems desirable to
obtain some information as to how the continued breakage
of* individual molecular chains influence the mechanical
behavior of the remaining chain network. As a result
of the chain breaking processes, the state of stress
in a microscopic surrounding of unbroken chains, the
macroscopic strains and the orientation distribution
of the molecules in space will change. This change in
turn will affect the rate of rupture of other molecular
chains. In any high polymer solid the thermal motion
of segments or side groups leads to microbrownian motion
and contributes toward changing stralins and molecular
orientation distribution. Since the conditions of
small strains and invarlant orientation distribution
are necessary or desirable for a number of theoretical



considerations, it is of interest to show whether these
conditions are fulfilled for a network with no slip of
chain segments, as creep due to slip is not taken into
account in the present calculations. The time dependent
mechanical behavior of such a model network for the case
of uniaxial stressing is studied. Instructive results
such as the time-to-break and the value of strain as a
function of time are obtained. Changes in the relative
orientation distribution of the network chains are also
found.

THE MODEL

A model very suitable for calculations of the
behavior of chain networks has already been developed
earlierS. It was considered that on a macroscopic
scale polymer solids are homogeneous so that continuum
theory of elasticity may be applied to relate prescribed
forces and deformations to the state of strain of a
small subvolume, Within the subvolume the presence of
molecular chains and theilr orientation 1s taken into
account. In this model the locad carrying chain molecules
are represented by linear elastic elements. A condition
of homogeneous strain* is assumed for any sufficiently
small subvolume. Consequently the force F, acting upon
each of the individual elements within this subvolume
is determined by the orientation and the elastic constant
k. of the element together with the state of strain €
of the subvolume as follows:

* . .
A discussion of the consequences following from this
and alternative assumptlions is given in reference 6.




F(6,t) = S ACICRCN (1)
where Zo is the length of any of the individual elements
and 8. nh are components of the unit vector in the
direction of orientation identified by 6 and ¢ (sl =
sinf cosd, 8y = sinf sindg, Sz = cosf in spherical
coordinates). If for convenience we replace forces

by stresses, we obtain:

v(6,0,t) = Ee S 8. (2)
where E = K£O2A, if N is the number of elements per unit
volume. This general scheme is roughly represented in
Fig. 1 with various possible orientations of the molecular
network in a material body under a prescribed load, P.

We may repeat that the state of stress of an individual
element is given by (2). The stress at any particular
point within the macroscopic body shall be given as an
average of all of the stress contributions of the molecular
elements within the subvolume around this point. As
shown previou31y5 the macrogscopic stresses, qid’ can: be
calculated from (2) once the orientation distribution
function, p, is known. Thus a basic constitutive equation
describing the mechanical behavior of a molecular solid
is obtained. For a brittle solid Emn is regarded to be
small.

It might be mentioned that the kinetic nature of
fracture was introduced into this theory by assuming
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is dependent upon the local stress ¥(6,¢,t). This
assumption has led to a system of integro-differential




equations which have been solved successfully for only
special cases of prescribed macroscopic stresses and
molecular orientation7’8. In these cases the time-to-
break of the solid had been calculated as a function
of the prescribed load. Now, these calculations will
be extended to samples of random molecular orientation
using a numerical iteration method. This method also
yields information on the variation of the modulus of
elasticity, ratio of transverse and normal strains,

as well ag the molecular orientation distribution.

NUMERICAL ITERATIVE SOLUTION OF CONSTITUTIVE EQUATIONS

As can be shown5 the macroscopic stress tensor
Oij can be calculated as functions of w(9,¢,t), P
smn and the relative number of unbroken elements,

£(6,¢9,t) to give:

o = &
05 —\fpfsiSdeQ (3)

where d? is the infinitesimal solid angle. For the
case of uniaxial tension with hexagonal or transverse
symmetry with respect to the 33-axis as the direction
of orientation of the elements we obtain:

/2
11 = Opp =0 =k/\ Ep(6) 1(6,t)[e, sin%6 + €, 5c08°0]51n°0d0
0 ‘
/o (4)
Opng = 2T/\ Ep(6) f(e,t)[ellsin26 + 83300829]00829 sindde

0
(5)




Here the strain ratio v = Vg, ., = - 811/833 may be used
to eliminate €11~

For all elements with "orientation 6" the rate of
rupturing of the unbroken elements is given by the

modified activation energy

df/dt = - fK_ (6)

where
K, = w,exp[-U/RT + By(6,t)] ¥ (7)

a% and p are constants, R 1s the gas constant, T absolute
temperature and U the activation energy.

The time-dependent quantities EBS(t)’ v(t) and
£(6,t) must be found so as to satisfy equations (4) -
(7). Numerical results are obtained using an iteration
method.

The principle of this method is to determine w(e,tl)
at time t, from v(tl) and 833(t1). With w(e,tl) and
f(@,tl) Known, (df/dt)t can be determined. The iteration

1

process then makes use ~of the approximation:

£(e,t.) = £(8,t,) + (df/dt), At (8)
2 1 tl
Where At is an arbitrarily small time, and the calculation
of ¥, v, and &5, is repeated for t = t, with f = f(e,tg).
In the case of uniaxial stress applied to a randomly

*The formulation of equation (7) implies that all the
load carrying elements have the same potentlal energy
barrier U, 1.e., any initial stresses of the unloaded
specimen are neglected. The formulation is valid if
the variation of U/RT 1s small compared with BY¥.



oriented specimen (p = 1/27) the successive steps of
the iteration process are as follows.
At first the change of f is determined.

— e35(t,) 2
Afl = Af(@,tl) = - (DbAt f(@,tl)exp[6f300 85—3(—,0—;)- (COS 6
.. 2
- v(tl)s1n 6)] (9)
where @ B abexp(—U/RT) and o = 0gz = const.

As a second step f. = f(9,t2) is calculated from

(8) and (9) where At ma§ be chosen arbitrarily but
small, In order to obtain sufficient accuracy with
reasonable computing times 5£At was chosen to be
Dexp(—GBoo) where D is a number which varies between
0.002 and 0.04.

The third step is the calculation of v(te) from (4):

T/2 /2

V(tg) =\/\ £, cos6 sin59d9</\ f2 sin°0do (10)
0

Finally ESS(tE)/ESB(to) is calculated from (5):

/2
2 .. 2 2 .
€33(t2)/833(0) = 1/?/\ f,lcos™® - v sin“@]cos®6 sinéd6 (11)
0

Then a new cycle may be started with the values obtained
from equation (9) - (11). 1In order to keep the error
inflicted by the approximation small (< 5%) D must be
decreased every few cycles. The iteration process is
terminated once the total number of unbroken elements is
reduced and thus the local stress ¥(0,t) increased so



much that catastrophic failure must occur (arbitrarily
a value of GBGOEBS(tg/ESB(tO) - 6po_ = 40 with a rate
of Af/f = - 0,002 e~ was chosen to mark the point of
catastrophic failure).

RESULTS AND DISCUSSION

Stress ¥ as a function of cosf

The presence of kinetic fracture processes in a
stressed network of elastic elements leads to a continuous
decrease of the number of unbroken elements and consequently
to an increase in local stress ¥. 1In Fig, 2, ¥ in a
uniaxially stressed specimen is shown as a function of
cos® (orientation of elements) for a value of o, = 0.5*;
It is seen that the shape of the stress distribution 1is
not changed much during most of the "life-time" of the
specimen, The angle Go(t) for which %(t) = 0 changes
only very slowly with time. In this figure as well as
in the next four figures time is measured in units of
TIME = abt exp(6aoo). In this way all lifetimes are in
the neighborhood of unity for ease of comparison. As
can be seen from Fig., 2 the elements oriented in the
direction of uniaxial stress have to carry most of the
load and will break with the highest rate., The dashed
line in the figure indicates that at TIME = 0,808 there

are no unbroken elements of such orientation.

Orientation distribution

The high rate of fracture of elements in the direction
identified by cosf = 1 leads to a pronounced decrease of

*We will discuss the results and draw the figures in terms
of BY or o rather than ¥ or o_ alone because the rate
of fractureodepends upon Bog. This way the results are
valid for different materials and different temperatures.



the number of unbroken elements in that direction while
the number in other directions decreases slowly. The
change in the distribution of elements thus resulted is
shown for those values of TIME at which f begins to

reach 0,5 and 0, It is seen in Fig. 3 that in the case

of a high stress level (Boo = 25/6) fracture within a
small solid angle of orientation proceeds so much faster
than elsewhere that even at catastrophic failure only a
small number of elements is seen to be affected., It is
also seen that once f comes close to zero the catastrophic
failure follows immediately. At a reduced level of stress
(600 = 3/6) the proceedings in the central section are
more moderate and a larger region is noticably affected;
but again, there is only a small difference in TIME

(~ 0.043) from where the number of unbroken elements
reaches zero to produce the catastrophic failure.

Figure 4 shows the changes in the number of unbroken
elements for a very small stress (ﬁoo = 0,1/6). 1In this
case the rate of breakage of unbroken elements is practi-
cally independent of stress and consequently of orientation.
This rate is solely determined by & = wbexp(—U/RT). For
polymeric solids in their glassy state it is known to be
extremely small, For various reasons the predicted
values as shown in Fig. 4 may not be very significant.

As indicated earlier the scatter in the potential barrier
U can be neglected only if the term ﬁco is much larger
than the average deviation of U/RT from the mean value.
This will not be the case if 560 is too small, Another
reagson may be the occurrence of reformation processes
which will have the most effect at small stresses and
even lead to infinite lifetimes at finite stresseso.

Strain as a function of TIME

To maintain a constant stress Go with a decreasing
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number of elements the strains in the unbroken elements
have to increase, In other words: an elastic network
with the above described properties will show additional
deformation, 1In Fig. 5 the change of 833(t) is plotted
against TIME. It is seen that 833 increases almost
linearly at first. After a period of accelerated incre-
ments the point of catastrophic failure is well defined

where the rate of change in ¢ approaches infinity. It

may be noted that in terms ofsglME even infinitely large
stresses lead to a finite time for catastrophic failure,.
Numerical calculations of breaking TIME with 600 up to
100/6 have shown that this limit is TIME§ = 0,622, An
analytical verification of this value is difficult and
not yet available. In the appendix it 1s shown, however,
that a limit exists which is larger than 5/12 or

TIME; > 5/12,

Strain ratio as a function of TIME

As a consequence of the different decay rates for
elements of different orientations the relative distribution
of the elements in the elastic network changes and so
does the strain ratio. The variation of v as used in
(10) with TIME is shown in Fig. 6. For very small stresses
there is almost no change of v due to the fact that the
rate of breakage of unbroken elements is practically
independent of direction. For very high stresses the
breaking of elements is concentrated near the direction
of applied uniaxial stress, affecting only very few
elements and again v does not change much, If, however,
Boo is near unity then the relative distribution of
broken and unbroken elements undergoes the greatest
change and so does v, In all cases during catastrophic

failure v tends toward zero.
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Lifetime as a function of stress

For each level of stress the point of catastrophic
failure determines the lifetime of the specimen. In
Fig., 7 for different specimens and different assumptions
the calculated time to break is shown as a function of
uniaxial stress BGO. Curve I refers to a completely
oriented specimen (all elements in the direction of
stress). This curve has already been discussed earlierS.
At higher stress values this curve i1s almost a straight
line with a slope of - 1 - 1/600. For small values of
BGO Curve I approaches infinity. Curve III refers to

- a randomly oriented specimen (p = 1/27). For small

values of ﬁoo both curves approach each other., For
large values Curve III forms a straight line and the
inclination can be calculated in the same way as for
Curve I only in this case GO/ESS(tO) = E/6 and we obtain
dlna%tb/d(ﬁoo) = -6 - 1/BGO. Accordingly for any inter-
mediate orientation the slope of the lifetime curve
would be given by dlnabtb/d(ﬁdo) = - E/E(e) - l/Bco
where E(g) is the initial modulus of elasticity of the
oriented sample (orientational strain e). If (chfO)'1

is neglected, then this expression can be written as
dln&%tb/[d(ﬁoo)/E(s)]. This means that by suitably
reducing the abscissa with 1/E(e) the 1lifetimes to
fracture for specimen of different degrees of orientation
would fall on one 1line.

Fracture data for oriented material (PAN, Polyacry-
lonitrile )were recently published by Regel and Leksovskyg.
These data are shown in Fig. 8. If the assumptions
made in deriving (12) are correct, then a simple reduction
of the abscissa with E/E(e) would make the 4 curves in.
Fig., 8 fall together to one. This is indeed the case
if E/E(e) values are sultably chosen. The values used
have not yet been compared with direct measurements of
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the initial modulus of elasticity of PAN, but they are
compared with measurements made on Nylon €66 and with
theoretical values (Fig., 9). The change of modulus
which has to be assumed for PAN turns out to be very
close to the theoretical predictionG. To obtain Curves
I and III it was assumed that the rate of fracture 1is
correctly given by (7).

Since it is difficult to imagine how linear elements
may break under a compressive load without shear, the
calculations were repeated using the assumption that
df/dt = 0 for ¥ = 0. It was found, however, that even
for small values of Bco(m 1/12) the change in lifetime
as a result of using this assumption was less than 3%.
For- moderate and high stresses no difference was found.
If an assumption that the rate of breakage 1s determinable

by:

af/dt = - &%f sinh (B¥) (12)

rather than by an exponential law,then the assumption

of df/dt = 0 for ¥ = 0 does not lead to any unsteadiness
of df/dt for ¥ = 0. The time to break calculated with
a rate proportional to sinh (B¥) is also shown as Curve
IT in Fig. 7 for comparison.

Partially oriented specimen and time-dependent loading
In previous calculations only a completely oriented

specimen or a totally unoriented specimen (p = 1/2m)

has been treated. Since a numerical method 1s employed

there will be no difficulty whatsoever to substitute p

by any orientation distribution functlion and repeat the

calculations., For example, in the case of uniaxial
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orientation through a homogeneous plastic deformation
the function

(1 +¢)°
6 + (1 + e)ssinee]

1
p(9) - —
2T [0032

S/2
may be used, where £ 1s the plastic orientational strain.
The results will lie between the values obtained for a
randomly oriented system and a completely oriented system,
For a time dependent rather than a constant stress,
an analytical solution of equations (6) and (7) is
avallable for several special loading conditions., In
most cases a twofold approximation will become necessary.
At first the time dependent stress will have to be
approximated by a constant state of stress within a
certain interval of time. Secondly, the continuous
change of the number of unbroken elements will be approx-
imated by a stepwise change as in this report.

CONCLUSIONS

The following conclusions may be drawn which also
answer the questions raised at the beginning,

a) In uniaxial stressing, only elements within a
relatively small solid angle are affected and the
size of this angle changes little during 90% of
the lifetime (Figs. 2 and 3).

b) The additional strain developed during stressing
and thus leading into new orientation distributions
of the elements can be calculated from Fig., 5.

The general coordinate 835(t)BE can be transformed
into the strain coordinate of one experiment by
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specifying B and E. For organic glass B is 2.27 x
1072 cmz/kp8 and the modulus of elasticity of a
completely oriented material can be estimated to
be six times that of the unoriented material of
12,000 kp/cmg. The general ordinate 10 would
correspond in the particular experiment to a strain
of 10/(2.27 x 10™° x 6 x 12 x 10°) = 0.6%. Thus,
it seems that the additional strain for most of
the lifetime is smaller than 1%. Once the time
approaches the point of catastrophic failure the
strain increases rapidly so that the orientation
distribution of the unbroken elements will change.
By that time, however, the fracture process has
entered the macroscopic stage and an entirely new
formulation of the problem may be needed for
further study.

The stress-1lifetime curves of uniaxially stressed
materials of different degree of orientation have
linear slopes which are approximately inversely
proportional to E(e). Thus, if the abscissa is
reduced by a factor of E(eg) all curves will fall
together at values of Bdo > 0.4, Recently published
data of the fracture of PAN seem not to disagree
with this prediction.
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APPENDIX

Lower limit of TIME-to-break for infinitely high stresses

If TIME = Ebtexp(GBoo) is used as time scale, then
the calculated TIME-to-break for high stresses tends
towards a limit of TIMES = 0,622. It may be shown in
this Appendix that a limit exists which is larger than
5/12. Let us abbreviate eBB(tn)/aSS(o) by A_. Thus

(11) can be given as:

/2
A;1 = %/\ fn(cosge—vsinge)cosze sinlde (A1)
0)

For very high stresses it has been shown that v(t) = v =
0.25 is constant throughout most of the lifetime. Using
this and also (8) and (9) we may rewrite (Al) as:

1
-1 -1 2 .2 2
A=A T, ?/\fn_lD(cos £-0.255in“6)cos"8
0
exp[B(wn_1—6oo)]d(cose) (A2)

If cosf is replaced by y = 1 - cosf and if for small y

the term y2 is neglected we get:

1

- - 9 5
a”t ot 6exp[B(An_1—l)]f £,_1D(1-3Z v)exp(-5 ¥BA, 1)dy

0
(A3)
where B = 6500
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If we replace fn-l < fo = 1 by 1 and solve the integral,

we obtain:

-1 -1
AT >ALT) - Dexp[GfSGo(An_l—l)]/2.5[300An_1 (A4)
and
A -A . Dexp[6BGO(An_l-1)] (45)
An—l 2.5&00
Since D = d(TIME) and (An - An_l)/An_l = dA/A we have
_ Y Bo dA
fd'(T-IME) >f2.5 g eXp[-6sGO(A - 1))
1
5 5 ooexp(—6ﬁooA)
= TGBooexp(&Bco)f I dA (a6)
1
The integral term 1s well known and may be approximated
by exp(—6ﬁco)/6600. Thus
© 2,5
fd(TIME) = TIME, > <%= = 5/12 (A7)
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